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It is well known from many calculations of the

structure of the γ–vibrational states in the well de-

formed axially symmetric nuclei [1] that the struc-

ture of the γ–phonons is mainly exhaused by a

rather small number of the two–quasiparticle com-

ponents. Due to this fact the energy of the γ–

vibrational state can be strongly influenced by the

presence of the low–energy two–quasiparicle state

with Kπ = 2+. This happens if near the Fermi

level are located two nearly lying single particle

states having the same parities and the projections

of the angular momentum on the axial symmetry

axis whose sum or difference is equal to K=2. Such

closely lying single particle states can be the mem-

bers of the pseudospin doublet. Calculation the en-

ergies of the γ–vibrational states for the sequences

of the isotopes of the elements with Z ∼ 100 and

investigation the influence of the appearance of the

pseudospin doublets near the Fermi level on the

energies of the γ–vibrational states have been per-

formed in [2].

The Quasiparticle–Phonon Model is used to cal-

culate the energies of the γ–vibrational states. The

Hamiltonian of the Quasiparticle–Phonon Model [1]

contains the mean fields for protons and neutrons,

monopole pairing and the multipole–multipole in-

teraction, both isoscalar and isovector, acting in the

particle–hole and the particle–particle channels

H = Hsp + Vpair + V
ph
M + V

pp
M . (1)

Here Hsp is a one–body Hamiltonian, Vpair de-

scribes the monopole pairing, V
ph
M and V

pp
M are

particle–hole separable multipole interaction and

particle–particle multipole pairing interaction, re-

spectively.

As the mean field term we have taken the Woods–

Saxon potential

Vsp(~r) = VWS(~r) + Vso(~r),

VWS(~r) = −V0 (1 + exp[(r − R(θ, ϕ))/a])
−1

Vso(~r) = −κ(~p × σ)∇VWS(~r) (2)

with the parameters taken from [3]. They are pre-

sented in the Table 1. These parameters are quite

close to those used in the calculations for the rare

earth nuclei [3, 4]. There is some experimental infor-

mation about the quadrupole deformation param-

eter β2.The recent calculations [5] give the value

β2=0.26 for nuclei with Z=96–104 and N=148–156.

The results of calculations presented in [6] demon-

strate a stability of the quadrupole deformation for

nuclei with Z=100–104. For these reasons we have

used the same value of β2=0.26 for all considered

nuclei.

The γ–vibrational states can be considered as the

most collective vibrational excitations in many well

deformed axially symmetric nuclei. They have been

observed in many nuclei and are well understood

theoretically. However, the experimental informa-

tion on these excitations in nuclei with Z ∼100 is

rather scarce. The γ–vibrational excitations have

been observed only in 246,248Cm , 250,252Cf and
254,256Fm.

The results of our calculations of the energies and

the two–quasiparticle structure of the γ–vibrational

states are presented in the Tables 2, 3 and 4 for

three values of the interaction constant κ22 of the

quadrupole-quadrupole forces in the particle-hole

channel. The value of κ22 = 0.0174 was fixed pre-

viously in the calculations for U isotopes. As it is

seen from the Table 2 with this value of κ22 we ob-

tain a good description of the known experimental

data. The results for the other two values of κ22 are

shown in order to get an idea of sensitivity of the

energies of γ–phonons to variations of κ22. The re-

sults presented in the Tables 2-4 are obtained with-

out taking into account a mixing of the one-phonon

and two-phonon states.

The results given in the Table 2 show that for all

considered elements the energy of the γ–vibrational

state takes its minimum in nuclei with the num-

ber of neutrons equal to N=156. To understand

this fact let us analyze the quasiparticle structure

of the γ-phonon. It is seen from the Tables 3 and 4

that if the number of neutrons approaches the value

N=156 the contibution of the two–quasiparticle

component 3/2[622] ⊗ 1/2[620] to the norm of the

γ–vibrational one phonon state becomes the largest

one. At N=156 and β2 = 0.26 the neutron Fermi

Table 1: Parameters of the Woods–Saxon potential

used in the calculations.

A isospin V0, MeV r0, fm a, fm κ, fm2

243 n 46.0 1.26 0.72 0.430

243 p 62.0 1.24 0.65 0.370
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Table 2: The experimental and the calculated en-

ergies of the Kπ = 2+ γ–vibrational states. The

energies are given in keV. The quadrupole interac-

tion constant κ22 is given in fm2/MeV. This dimen-

sion of the interaction constant is determined by the

use of the radial derivative of the Woods–Saxon po-

tential as a formfactor of the multipole–multipole

interaction. The experimental data are taken from

[7].

Nucleus E(2+
γ )exp E(2+

γ )calc

κ22

0.0174 0.0165 0.0150
246Cm 1124 1225 1432 1680
248Cm 1049 997 1229 1492
248Cf – 1289 1478 1708
250Cf 1032 1079 1282 1517
252Cf 805 781 987 1207
254Cf – 553 758 957
256Cf – 612 834 1058
250Fm – 1181 1354 1543
252Fm – 1021 1225 1462
254Fm 694 735 933 1148
256Fm 682 510 713 909
258Fm – 586 812 1042
252No – 1261 1461 1703
254No – 1065 1274 1520
256No – 809 1018 1251
258No – 531 725 914
260No – 602 826 1052
254Rf – 1291 1478 1626
256Rf – 1077 1277 1497
258Rf – 833 1049 1286
260Rf – 539 731 917
262Rf – 606 832 1057

level is located between the single particle states

3/2+[622] and 1/2+[620] and therefore the two–

quasiparticle state consisting of these quasiparti-

cles has the smallest energy compared to the other

two–quasiparticle states. This energy is equal to

1.251 MeV. This explains why the energy of the γ–

vibrational one phonon state has a minimum when

the number of neutrons is equal to N=156. The

other important neutron two-quasiparticle compo-

nent 7/2[613]⊗3/2[622] has at N=156 the energy

1.343 MeV. However, our calculations have shown

that the energy of this two-quasiparticle compo-

nent has its minimum not at N=156 but at N=154.

The energies of the others neutron two-quasiparticle

components are larger than 2 MeV if N=156.

To verify further the effect of the neutron two-

quasiparticle component 3/2[622]⊗1/2[620] on the

neutron number dependence of the energies of the γ-

vibrational states we have shifted artificially the en-

ergy of the neutron single particle state 3/2[622] up,

i.e. decreased its binding, by 0.6 MeV and 1.2 MeV.

As the result there appear two and three others neu-

tron single particle states, respectively, between the

1/2[620] and 3/2[622] neutron single particle states

at β2=0.26. This shift of the energy of the single

particle state changes the neutron number depen-

dence of the energy of the γ-vibrational state in such

a way that the minimum at N=156 disappears and

E(2+
γ ) decreases continuously if N increases from

N=150 to N=160. The absolute value of E(2+
γ ) is

increased because of this shift of the energy of the

single particle neutron state 3/2+[622] for all con-

sidered isotopes. This fact indicate on the strong

neutron number dependence of the E(2+
γ ) and its

absolute value on a relative position of the neutron

single particle states 1/2[620] and 3/2[622].

The single particle neutron states 3/2+[622] and

1/2+[620] are the members of the pseudospin dou-

blet with the quantum numbers [Ñ ñ3Λ̃]=[521].

The connection of the pseudospin quantum num-

bers to the Nilsson asymptotic quantum numbers

[NnzΛ1,2] is the following: Ñ = N−1, ñ3 = n3, Λ̃ =
1

2
(Λ1 + Λ2). Our discussion above have shown that

the difference between the single particle energies

of these states influences on the neutron number

dependence and the absolute energy value of the

γ-vibrational state. Small splitting of the 1/2[620]

and 3/2[622] single particle state will mean that the

pseudospin symmetry is approximately preserved.

Thus, the experimental observation (or nonobser-

vation) of the minimum of the energy of the γ–

vibrational one phonon state when the number of

neutrons is equal to N=156 is important for studing

manifestation of the pseudospin symmetry in very

heavy exotic nuclei. The value of E(2+
γ ) at N=156

gives an information on the splitting of the pseu-

dospin doublet [Ñ ñ3Λ̃]=[521].

To get the feeling of the effect of the mixing of

the one-phonon and the two-phonon states we have

performed the calculations for the Cf isotopes with

and without the mixing. The results of the calcula-

tions have shown that the mixing of the one-phonon

and the two-phonon states decreases the energies of

the E(2+
γ ) states approximately by 50 keV. How-

ever, this mixing does not influence on the neu-

tron number dependence of the E(2+
γ ) and keeps

the minimum at N=156. Approximately 98% of

the norm of the state vectors corresponding to the

γ-vibrational states obtained in the calculations in-

cluding the mixing effect are provided with the one-

phonon component.

In conclusion, basing on the Quasiparticle–

Phonon Model we have calculated the energies and

the two–quasiparticle structure of the γ–vibrational

states. The results of calculations show that in the

isotopes of Cm, Cf, Fm, No, and Rf the energies of

the one–phonon γ–vibrational states have a mini-

mum if the number of neutrons is equal to N=156.
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Table 3: The quasiparticle structure of the calculated Kπ = 2+ γ–vibrational states of 246,248Cm, 248−256Cf,

and 250−258Fm. The quantum numbers of the most important two–quasiparticle components and their

contribution (in %) to the norm of the γ–phonon are shown. The quadrupole interaction constant κ22 is

given in fm2/MeV.

Nucleus Structure (in %)

κ22=0.0174 κ22=0.0165 κ22=0.0150
246Cm nn 7/2[624] ⊗ 3/2[622] 23 nn 7/2[624] ⊗ 3/2[622] 27 nn 7/2[624] ⊗ 3/2[622] 35

nn 5/2[622] ⊗ 1/2[620] 20 nn 5/2[622] ⊗ 1/2[620] 22 nn 5/2[622] ⊗ 1/2[620] 25

pp 3/2[651] ⊗ 1/2[660] 7 pp 3/2[651] ⊗ 1/2[660] 7 pp 3/2[651] ⊗ 1/2[660] 6
246Cm nn 7/2[624] ⊗ 3/2[622] 30 nn 7/2[624] ⊗ 3/2[622] 36 nn 7/2[624] ⊗ 3/2[622] 51

nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 12

nn 5/2[622] ⊗ 1/2[620] 12 nn 5/2[622] ⊗ 1/2[620] 12 nn 5/2[622] ⊗ 1/2[620] 10

pp 3/2[651] ⊗ 1/2[660] 5
248Cf nn 7/2[624] ⊗ 3/2[622] 24 nn 7/2[624] ⊗ 3/2[622] 29 nn 7/2[624] ⊗ 3/2[622] 37

nn 5/2[622] ⊗ 1/2[620] 20 nn 5/2[622] ⊗ 1/2[620] 23 nn 5/2[622] ⊗ 1/2[620] 26

nn 3/2[622] ⊗ 1/2[620] 6 nn 3/2[622] ⊗ 1/2[620] 6 nn 3/2[622] ⊗ 1/2[620] 5

pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 8
250Cf nn 7/2[624] ⊗ 3/2[622] 31 nn 7/2[624] ⊗ 3/2[622] 38 nn 7/2[624] ⊗ 3/2[622] 52

nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 13 nn 3/2[622] ⊗ 1/2[620] 11

nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 10

pp 3/2[521] ⊗ 1/2[521] 7 pp 3/2[521] ⊗ 1/2[521] 7 pp 3/2[521] ⊗ 1/2[521] 6
252Cf nn 3/2[622] ⊗ 1/2[620] 39 nn 3/2[622] ⊗ 1/2[620] 48 nn 3/2[622] ⊗ 1/2[620] 63

nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 13

nn 7/2[613] ⊗ 3/2[611] 6 nn 7/2[613] ⊗ 3/2[611] 5

nn 5/2[622] ⊗ 1/2[620] 6
254Cf nn 3/2[622] ⊗ 1/2[620] 55 nn 3/2[622] ⊗ 1/2[620] 66 nn 3/2[622] ⊗ 1/2[620] 81

nn 7/2[624] ⊗ 3/2[622] 8 nn 7/2[624] ⊗ 3/2[622] 6

nn 7/2[613] ⊗ 3/2[611] 6
256Cf nn 3/2[622] ⊗ 1/2[620] 47 nn 3/2[622] ⊗ 1/2[620] 59 nn 3/2[622] ⊗ 1/2[620] 76

nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6

nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6
250Fm nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 10

nn 5/2[622] ⊗ 1/2[620] 14 nn 5/2[622] ⊗ 1/2[620] 14 nn 5/2[622] ⊗ 1/2[620] 10

pp 3/2[521] ⊗ 1/2[521] 33 pp 3/2[521] ⊗ 1/2[521] 40 pp 3/2[521] ⊗ 1/2[521] 41

pp 7/2[514] ⊗ 3/2[521] 23
252Fm nn 7/2[624] ⊗ 3/2[622] 23 nn 7/2[624] ⊗ 3/2[622] 26 nn 7/2[624] ⊗ 3/2[622] 31

nn 3/2[622] ⊗ 1/2[620] 10 nn 3/2[622] ⊗ 1/2[620] 10 nn 3/2[622] ⊗ 1/2[620] 9

nn 5/2[622] ⊗ 1/2[620] 10 nn 5/2[622] ⊗ 1/2[620] 10 nn 5/2[622] ⊗ 1/2[620] 8

pp 3/2[521] ⊗ 1/2[521] 22 pp 3/2[521] ⊗ 1/2[521] 25 pp 3/2[521] ⊗ 1/2[521] 31
254Fm nn 3/2[622] ⊗ 1/2[620] 37 nn 3/2[622] ⊗ 1/2[620] 45 nn 3/2[622] ⊗ 1/2[620] 58

nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 15 nn 7/2[624] ⊗ 3/2[622] 12

nn 7/2[613] ⊗ 3/2[611] 6

pp 3/2[521] ⊗ 1/2[521] 11 pp 3/2[521] ⊗ 1/2[521] 11 pp 3/2[521] ⊗ 1/2[521] 9
256Fm nn 3/2[622] ⊗ 1/2[620] 54 nn 3/2[622] ⊗ 1/2[620] 65 nn 3/2[622] ⊗ 1/2[620] 80

nn 7/2[624] ⊗ 3/2[622] 8 nn 7/2[624] ⊗ 3/2[622] 6

nn 7/2[613] ⊗ 3/2[611] 6

pp 3/2[521] ⊗ 1/2[521] 6 pp 3/2[521] ⊗ 1/2[521] 5
258Fm nn 3/2[622] ⊗ 1/2[620] 44 nn 3/2[622] ⊗ 1/2[620] 55 nn 3/2[622] ⊗ 1/2[620] 73

nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6

nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6

pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 7 pp 3/2[521] ⊗ 1/2[521] 5
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Table 4: The quasiparticle structure of the calculated Kπ = 2+ γ–vibrational states of 252−260No and
254−262Rf. The quantum numbers of the most important two–quasiparticle components and their contribu-

tion (in %) to the norm of the γ–phonon are shown. The quadrupole interaction constant κ22 is given in

fm2/MeV.

Nucleus Structure (in %)

κ22=0.0174 κ22=0.0165 κ22=0.0150
252No nn 5/2[622] ⊗ 1/2[620] 17 nn 5/2[622] ⊗ 1/2[620] 18 nn 5/2[622] ⊗ 1/2[620] 19

nn 7/2[624] ⊗ 3/2[622] 17 nn 7/2[624] ⊗ 3/2[622] 18 nn 7/2[624] ⊗ 3/2[622] 19

nn 3/2[622] ⊗ 1/2[620] 5 nn 3/2[622] ⊗ 1/2[620] 5

pp 3/2[521] ⊗ 1/2[521] 21 pp 3/2[521] ⊗ 1/2[521] 25 pp 3/2[521] ⊗ 1/2[521] 33
254No nn 7/2[624] ⊗ 3/2[622] 25 nn 7/2[624] ⊗ 3/2[622] 29 nn 7/2[624] ⊗ 3/2[622] 37

nn 3/2[622] ⊗ 1/2[620] 11 nn 3/2[622] ⊗ 1/2[620] 11 nn 3/2[622] ⊗ 1/2[620] 11

nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 10 nn 5/2[622] ⊗ 1/2[620] 9

pp 3/2[521] ⊗ 1/2[521] 16 pp 3/2[521] ⊗ 1/2[521] 18 pp 3/2[521] ⊗ 1/2[521] 21
256No nn 3/2[622] ⊗ 1/2[620] 34 nn 3/2[622] ⊗ 1/2[620] 41 nn 3/2[622] ⊗ 1/2[620] 55

nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 14

nn 7/2[613] ⊗ 3/2[611] 6 nn 7/2[613] ⊗ 3/2[611] 5

nn 5/2[622] ⊗ 1/2[620] 6 nn 5/2[622] ⊗ 1/2[620] 5

pp 3/2[521] ⊗ 1/2[521] 10 pp 3/2[521] ⊗ 1/2[521] 9 pp 3/2[521] ⊗ 1/2[521] 8
258No nn 3/2[622] ⊗ 1/2[620] 56 nn 3/2[622] ⊗ 1/2[620] 66 nn 3/2[622] ⊗ 1/2[620] 81

nn 7/2[624] ⊗ 3/2[622] 7 nn 7/2[624] ⊗ 3/2[622] 6

nn 7/2[613] ⊗ 3/2[611] 6

pp 3/2[521] ⊗ 1/2[521] 5
260No nn 3/2[622] ⊗ 1/2[620] 46 nn 3/2[622] ⊗ 1/2[620] 57 nn 3/2[622] ⊗ 1/2[620] 75

nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6

nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6

pp 3/2[521] ⊗ 1/2[521] 5
254Rf nn 7/2[624] ⊗ 3/2[622] 21 nn 7/2[624] ⊗ 3/2[622] 21 nn 7/2[624] ⊗ 3/2[622] 82

nn 5/2[622] ⊗ 1/2[620] 19 nn 5/2[622] ⊗ 1/2[620] 19

nn 3/2[622] ⊗ 1/2[620] 6

pp 3/2[521] ⊗ 1/2[521] 8 pp 3/2[521] ⊗ 1/2[521] 17

pp 5/2[512] ⊗ 1/2[521] 8 pp 5/2[52] ⊗ 1/2[521] 8
256Rf nn 7/2[624] ⊗ 3/2[622] 31 nn 7/2[624] ⊗ 3/2[622] 36 nn 7/2[624] ⊗ 3/2[622] 39

nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 12 nn 3/2[622] ⊗ 1/2[620] 9

nn 5/2[622] ⊗ 1/2[620] 12 nn 5/2[622] ⊗ 1/2[620] 11 nn 5/2[622] ⊗ 1/2[620] 8

pp 3/2[521] ⊗ 1/2[521] 6 pp 3/2[521] ⊗ 1/2[521] 6 pp 3/2[521] ⊗ 1/2[521] 24
258Rf nn 3/2[622] ⊗ 1/2[620] 35 nn 3/2[622] ⊗ 1/2[620] 43 nn 3/2[622] ⊗ 1/2[620] 57

nn 7/2[624] ⊗ 3/2[622] 16 nn 7/2[624] ⊗ 3/2[622] 17 nn 7/2[624] ⊗ 3/2[622] 15

nn 7/2[613] ⊗ 3/2[611] 6 nn 7/2[613] ⊗ 3/2[611] 5

nn 5/2[622] ⊗ 1/2[620] 6 nn 5/2[622] ⊗ 1/2[620] 5
260Rf nn 3/2[622] ⊗ 1/2[620] 57 nn 3/2[622] ⊗ 1/2[620] 68 nn 3/2[622] ⊗ 1/2[620] 82

nn 7/2[624] ⊗ 3/2[622] 8 nn 7/2[624] ⊗ 3/2[622] 6

nn 7/2[613] ⊗ 3/2[611] 6
262Rf nn 3/2[622] ⊗ 1/2[620] 47 nn 3/2[622] ⊗ 1/2[620] 59 nn 3/2[622] ⊗ 1/2[620] 77

nn 7/2[613] ⊗ 3/2[611] 7 nn 7/2[613] ⊗ 3/2[611] 6

nn 9/2[615] ⊗ 5/2[613] 7 nn 9/2[615] ⊗ 5/2[613] 6

nn 7/2[624] ⊗ 3/2[622] 6
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In addition, a contribution of the two–quasiparticle

component 3/2+[622]⊗1/2+[620] to the norm of the

γ–vibrational one–phonon state becomes the largest

one at N=156. The single particle states 3/2+[622]

and 1/2+[620] are the members of the pseudo–spin

doublet. Thus, the experimental information on the

energies of the γ–vibrational states in nuclei with

Z ∼ 100 can be used to determine a splitting of the

˜[521] pseudospin doublet.
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